DAX (Data Analysis Expressions) là ngôn ngữ được phát triển bởi Microsoft để tương tác với dữ liệu trong nhiều nền tảng của họ như Power BI, Power Pivot, và các mô hình bảng SSAS. Nó được thiết kế để đơn giản và dễ học đồng thời thể hiện sức mạnh và tính linh hoạt của các mô hình bảng. Ở một một mức độ nào đó, bạn có thể so sánh nó với các công thức Excel nâng cấp vừa dễ sử dụng mà lại tính toán được những hàm mà hàm tính Excel không thực hiện được.
Để hiểu thêm về định nghĩa, cách sử dụng, và một số hàm quan trọng được sử dụng trong DAX, bạn có thể tham khảo bài viết DAX: Ngôn ngữ mạnh mẽ cho phân tích và tính toán dữ liệu.
Sử dụng DAX (Data Analysis Expressions) trong Power BI mang lại nhiều lợi ích và cung cấp một khả năng mạnh mẽ để thực hiện phân tích dữ liệu và tính toán trong môi trường Power BI. Dưới đây là một số lý do vì sao chúng ta nên sử dụng DAX:
Mở ra một thế giới hoàn toàn mới
Hãy hình dung khi bạn sử dụng Excel và biết đến các hàm tính để tính tổng (SUM
), trung bình (AVERAGE
), đếm số hay tương tác giữa từng ô dữ liệu. Sau đó, bạn biết đến các hàm tính Excel không thể thiếu như VLOOKUP()
, IF()
, INDEX()
, MATCH()
, SUMIF()
,… và những hàm tính này giúp bạn làm được càng nhiều việc hơn, tính toán nhanh và chính xác hơn.
Tuy nhiên nó cũng có nhiều hạn chế trong việc duy trì hàm tính, thay đổi khi dữ liệu thay đổi, không linh hoạt. Điều đó hoàn toàn khác khi bạn biết và sử dụng DAX.
DAX mở ra một chân trời mới về phân tích kinh doanh và thực hiện các phép tính.
Giả sử với cách làm Excel truyền thống trước kia, ta phải tạo ra những hàm tính khác nhau khi tính ở các góc độ khác nhau thì với DAX, các hàm tính trở nên linh hoạt xuyên suốt tất cả các bảng dữ liệu. Nghĩa là với 1 hàm tính Doanh thu, ta có thể biết doanh thu của từng khách hàng cũng như doanh thu từng khu vực và cửa hàng. Hoặc với các hàm Time Intelligence, việc tính toán theo từng khung thời gian trở nên dễ hơn, linh hoạt và chính xác hơn.
Bên cạnh khả năng tính toán được mở rộng, các tính năng như dùng DAX để tạo các hàm tính biến thiên theo biến số hay để tạo bảng dữ liệu mới,… khiến việc phân tích trở nên dễ dàng hơn bao giờ hết.
Với Excel để thực hiện một phép tính theo thời gian như lũy kế năm, lũy kế tháng có thể sẽ cần khá nhiều những điều kiện dài dòng trong hàm tính. Với DAX, tất cả được gói gọn trong một hàm đơn giản như TOTALYTD()
và tính toán chính xác hơn rất nhiều so với các điều kiện chúng ta cần cung cấp trong hàm Excel.
Dễ dàng sử dụng và duy trì
Có thể thấy việc dùng hàm tính ở Excel đơn giản vì ta có thể trỏ đến từng ô và tính một cách độc lập không theo trình tự và quy luật của cấu trúc các bảng và dữ liệu. Tuy nhiên, đây cũng sẽ là một vấn đề đau đầu - đặc biệt khi bạn mở một file Excel với các công thức hiện là #VALUES!
Hay #NAME?
,… vì các ô dữ liệu sử dụng trong hàm tính ở các file khác không có liên kết hoặc bị trỏ vào các ô sai lệch. Và rồi ta phải mò dần từng vị trí ô dữ liệu để kiểm tra xem lí do gì mà xảy ra lỗi.
Khác với tính rườm rà đó, hàm DAX được ứng dụng để tính toán trong một mô hình dữ liệu chuẩn khép kín trong Power BI hoặc các cơ sở dữ liệu liên kết theo Direct Query. NHờ đó, các hàm tính trở nên rõ ràng và mọi thứ gói gọn trong File báo cáo bạn làm. Người dùng cũng có thể dễ dàng có thể nhận biết các lỗi hiển thị ở hàm DAX đến từ các trường dữ liệu nào và chúng ta cũng dễ dàng kiểm tra chúng ngay trong file Power BI đó.
DAX là ngôn ngữ tính toán trên mô hình Tabular vì vậy khi chúng ta tạo các hàm tính với logic chính xác, chúng ta không gặp phải tình huống mất công đi dò công thức tới từng ô dữ liệu như ở Excel nếu nó sai số hoặc bị hỏng.
Một ví dụ khác nữa đó chính là với Excel truyền thống, cùng một phép tính, chúng ta có thể phải copy và paste cho nhiều ô dữ liệu (ví dụ ta có bảng doanh thu của từng khách hàng theo từng tháng với mỗi tháng là mỗi cột và để biết tổng doanh thu của tháng thì hàm Tổng doanh thu sẽ phải được áp dụng cho từng cột một).
Với DAX, một hàm tính Doanh thu sẽ là một hàm tính và dựa trên mô hình dữ liệu mà ta xem được cùng hàm tính này với các chiều khác nhau. Vì vậy, khi chúng ta xây dựng, từng chỉ số hay hàm tính gói gọn vào đúng hàm tính đó và chúng ta cũng không mất công phải chỉnh sửa 1 lúc nhiều hàm tính tương tự nhau như ở Excel mà thay đổi công thức 1 hàm tính nó sẽ thay đổi cho toàn bộ.
Gia tăng khả năng báo cáo của bạn
Khi bạn ngày một thành thạo sử dụng DAX, bạn có thể tạo ra trang tổng quan thông minh hơn. Bằng cách sử dụng DAX, bạn có thể tạo các cột và / hoặc phép đo được tính toán thông minh hơn mà qua đó bạn có thể giới hạn dữ liệu mà trang tổng quan phải tìm, nạp và trực quan hóa. Mặc dù một số biểu thức DAX có thể kiểm tra giới hạn của các công cụ dữ liệu, nhưng một biểu thức được viết tốt có thể đẩy nhanh tiến độ, do đó hạn chế việc sử dụng tài nguyên.
Nếu trước kia Excel có sự giới hạn về việc xử lý dữ liệu với số lượng dòng lớn thì DAX là một công cụ mạnh mẽ hơn và xử lý tính toán nhanh hơn rất nhiều. Bạn đã bao giời mất nhiều thời gian để chờ file Excel của mình tính toán hơn là làm ra nó? Với Power BI, bạn có thể yên tâm về vấn đề tốc độ.
DAX không chỉ là BI
Nếu bạn dành thời gian đầu tư cho việc học DAX, thì kỹ năng mới có được của bạn không cần phải giới hạn trong môi trường Power BI. DAX có thể được sử dụng trong các sản phẩm Microsoft dạng bảng như:
- Power BI
- Analysis Services của Microsoft
- Microsoft Power Pivot dành cho Excel
Chưa kể cú pháp DAX cũng rất giống với công thức Excel nên bạn có thể dễ dàng liên hệ giữa 2 loại công thức.
Giúp bạn trở thành một chuyên gia dữ liệu
Mặc dù DAX chỉ có thể được sử dụng trong môi trường hỗ trợ nó, nhưng kỹ năng biết cách sử dụng DAX sẽ giúp bạn trở nên quen thuộc với các quá trình bóc tách dữ liệu và tối ưu hóa các mối quan hệ.
Lý do đầu tiên và quan trọng nhất đó là DAX làm việc với mô hình dữ liệu và các bảng dữ liệu theo cột và dòng, khác với sự đơn giản của Excel ở mức độ ô dữ liệu và đây mới là cách phân tích của một chuyên gia dữ liệu.
Thứ hai, vì DAX dựa trên một hệ thống các ngữ cảnh bộ lọc lồng nhau khác nhau mà hiệu suất là yếu tố then chốt, nên nó sẽ thay đổi cách suy nghĩ của bạn về các bảng và lọc dữ liệu. Bằng cách viết một đoạn mã DAX thông minh vào buổi sáng, bạn có thể cải thiện hiệu suất của một số mã Python hay R mà bạn đã viết trước đó vào buổi chiều. Nói cách khác, bằng cách học DAX, bạn sẽ cải thiện cách suy nghĩ của mình về cách hợp nhất, lọc, chọn và thao tác dữ liệu một cách hiệu quả.
Kết luận
Trên đây là một số lý do vì sao chúng ta nên sử dụng DAX trong Power BI. DAX không chỉ mang lại tính linh hoạt và mạnh mẽ cho việc thực hiện các tính toán và phân tích dữ liệu, mà còn đóng vai trò quan trọng trong việc xây dựng các báo cáo và bảng điều khiển thông minh, đa chiều và tương tác.
DAX là một ngôn ngữ rất mạnh, cho phép ta tạo ra các biểu thức phức tạp và tính toán thông minh dựa trên các dữ liệu trong Power BI. Sử dụng DAX, ta có thể thực hiện các tính toán theo nhóm, tính toán tại cấp độ dòng và cấp độ tổng hợp, cùng với các tính toán chuyển đổi và so sánh dữ liệu.
Nếu bạn đang làm việc với Power BI và muốn thực hiện các tính toán và phân tích thông minh và đa chiều, hãy tìm hiểu và sử dụng DAX. Đó là tiền đề quan trọng cho việc xây dựng các báo cáo và bảng điều khiển mạnh mẽ và giúp bạn khám phá sâu hơn trong dữ liệu của mình. Cảm ơn bạn đã đọc bài chia sẻ của KPIM!